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Abstract

From an information-theoretic perspective, a noisy traasion system such as a
visual Brain-Computer Interface (BCI) speller could betrfedim the use of error-
correcting codes. However, optimizing the code solely etiog to the max-
imal minimum-Hamming-distance criterion tends to lead moo&erall increase
in target frequency of target stimuli, and hence a signifigareduced average
target-to-target interval (TTI), leading to difficulties classifying the individual
event-related potentials (ERPs) due to overlap and reinaefffects. Clearly any
change to the stimulus setup must also respect the possptigphysiologi-
cal consequences. Here we report new EEG data from expdsrmewhich we
explore stimulus types and codebooks in a within-subjesigie finding an in-
teraction between the two factors. Our data demonstratéht@draditional, row-
column code has particular spatial properties that leagtiebperformance than
one would expect from its TTls and Hamming-distances albunénonetheless
error-correcting codes can improve performance provitedight stimulus type
is used.

1 Introduction

The Farwell-Donchin speller [4], also known as the “P300Ispgis a Brain-Computer Interface
which enables users to spell words provided that they casig@eiently well. This BCI determines
the intent of the user by recording and classifying his etectcephalogram (EEG) in response to
controlled stimulus presentations. Figure 1 shows a geRP&@0 speller scheme. The stimuli are
intensifications of a number of letters which are organizred grid and displayed on a screen. In a
standard setup, the rows and columns of the grid flash in arammtder. The intensification of the
row or column containing the letter that the user wants toroomicate is a target in a stimulus se-
guence and induces a different brain response than thesifitestion of the other rows and columns
(the non-targets). In particular, targets and non-targetsexpected to elicit certain event-related
potential (ERP) components, such as the so-called P300ffévetit extents. By classifying the
epochs (i.e. the EEG segments following each stimulus gir@nttargets and non-targets, the target
row and column can be predicted, resulting in the identificedf the letter of interest.

The classification process in the speller can be consideredsgt communication channel where
the sequence of EEG epochs is a modulated version of a li¢) steinoting the user’s desired letter.
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Figure 1: Schematic of the visual speller system, illugitathe relationship between the spatial
pattern of flashes and one possible codebook for letterrtrigzggon (flash rows then columns).

These bit strings or codewords form the rows of a binary codklf’, a matrix in which a 1 at
position(i, j) means the letter corresponding to roflashed at time-step and a O indicates that it
did not. The standard row-column code, in which exactly ave or exactly one column flashes at
any one time, will be denotelC. It is illustrated in figure 1.

A classifier decodes the transmitted information into arpoubit string. In practice, the poor
signal-to-noise ratio of the ERPs hampers accurate cleasifin of the epochs, so the output bit
string may differ from the transmitted bit string (decodiergor). Also, the transmitted string may
differ from the corresponding row in the codebook due to ntatitan error, for example if the user
lost his attention and missed a stimulus event. Coding thiedis us that we can detect and correct
transmission and decoding errors by adding redundancetodnsmitted bit string. The Hamming
distancel is the number of bit positions that differ between two rowa icodebook. The minimum
Hamming distancel,, of all pairs of codewords is related to the error correctibditées of the
code bye = (dmin — 1)/2, wheree is the maximum number of errors that a code can guarantee to
correct [9]. In general, we find the mean Hamming distanchiwia given codebook to be a rough
predictor of that codebook’s performance.

In the standard approach, redundancy is added by repebégrftashing of all rows and columrig
times. This leads tad = 4R between two letters not in the same row or column dpg = 2R
between two letters in the same row or column. R code is a poor code in terms of minimum
Hamming distance: to encode 36 different letters in 12 bijts,= 4 is possible, and the achievable
dmin inCcreases supra-linearly with the total code lengtifor example,d.;, = 10 is possible in
L = 24 bits, the time taken foR = 2 repeats of th&C code).

However, the codes with a largéy,, are characterized by an increasegight compared to th&C
code, i.e. the number of 1's per bitstring is larger. As taggenulus events occur more frequently
overall, the expected target-to-target interval (TTI)r@@ses. One cannot approach codebook op-
timization, therefore, without asking what effect this imidnave on the signals we are trying to
measure and classify, namely the ERPs in response to thelssievents.

The speller was originally derived from an “oddball” pamgi, in which subjects are presented with
a repetitive sequence of events, some of which are targetsrireg a different response from the
(more frequent) non-targets. The targets are expectedoeeey larger P300 than the non-targets.
It was generally accepted that the amplitude of the targ8ORI2creases when the percentage of
targets increases [3, 11]. However, more recently, it wagessted that the observed tendency of
the P300 amplitude (as measured by averaging over manygptgelecrease with increased target
probability may in fact be attributed to greater prevaleotshorter target-to-target intervals (TTI)
[6] rather than an overall effect of target frequency pedse different type of paradigm using only
targets, it was shown that at TTIs smaller than about 1 sedbrd?300 amplitude is significantly
decreased due to refractory effects [15]. Typical stimoluset asynchronies (SOAS) in the oddball
paradigm are in the order of seconds since the P300 compshens up somewhere between 200
and 800 msec[12]. In spellers, small SOAs of about 100 mseofen used [8, 13] in order to



achieve high information transfer rates. Consequentlg @m expect a significant ERP overlap
into the epoch following a target epoch, and since row flastiesoften randomly mixed in with
column flashes, different targets may experience veryréiffeTTls. For a6 x 6 grid, the TTI
ranges froml x SOA t020x SOA, so targets may suffer to varying degrees from any refra@and
overlap effects.

In order to quantify the detrimental effects of short TTI wamined data from the two subjects in
dataset lla+b from the BCI Competition IlI[2]. Followingdttlassification procedures described in
section 3.3, we estimated classification performance omttiedual epochs of both data sets by 10-
fold cross-validation within each subject’'s data set. Byjng@arget versus non-target) classification
results were separated according to the time since thequ®varget (TPT)—for the targets this
distance measure is equivalent to the TTI. The left panelgof fshows the average classification
error as a function of TPT (averaged across both subjectsh-duiitjects show the same qualitative
effect). Evidently, the target epochs with a T®T0.5 sec display a classification accuracy that
approximates chance performance. Consequently, the gpygehs with TP¥ 0.5 sec, constituting
about 20% of all target epochs irRC code, do not appear to be useful for transmission [10].

Clearly, there is a potential conflict between informattbeeretic factors, which favour increasing
the minimum Hamming distance and hence the overall prapodf target stimuli, and the detri-
mental psychophysiological effects of doing so.

In [7] we explored this trade-off to see whether an optimahpoomise could be found. We initially
built a generative model of the BCI system, using the cortipatdata illustrated in figure 4, and
then used this model to guide the generation and selectispeadfer code books. The results were
not unequivocally successful: though we were able to shéeesfof both TTls and of the Hamming
distances in our codebooks, our optimized codebook peddmo better than the row-column code
for the standard flash stimulus. However, our series of éxyets involved another kind of stim-
ulus, and the effect of our codebook manipulation was foanigiteract with the kind of stimulus
used.

The purpose of the current paper is two-fold:

1. to present new data which ilustrate the stimulus/codeloi@raction more clearly, and
demonstrate the advantage to be gained by the correct obfostienulus together with an
error-correcting code.

2. to present evidence for another effect, which we had restipusly considered in modelling

our subjects’ responses, which may explain why row-columaes perform better than
expected: specifically, the spatial contiguity of rows aallimns.

2 Decoding Framework

2.1 Probabilistic Approach to Classification and Decoding

We assume atV-letter alphabet” and an/N-letter by L-bit codebookC. The basic demodulation
and decoding procedure consists of finding the Iéftermong the possible lettetse T' showing
the largest probability’r (¢|X) of being the target letteér’, givenC and the measured brain signals
X = [,CCl, - 7&7[/}, i.e.,

. Pr (X|t) Pr(t)

T artgerpaxPr (t|X) artgengax Pr (X) ) 1)
where the second equality follows from Bayes’ rule. A simggroach to decoding is to treat the
individual binary epochs, with binary labets= (Cy; ... Cyy,), as independent. This allows us to
factorPr (X|t) into per-epoch probabilitieBr (z;|c) for epoch indiceg = 1. .. L, to give

L

L
Pr (1X) = o r((Xt)) [T Pl = - r(gt()) I1 o (Cgrfgj W) _fx). @

where the second equality again follows from Bayes’ rule.

This form of Bayesian decoding [5] forms the basis for ouratfteg scheme. We train a probabilistic
discriminative classifier, in particular a linear logistiegression (LR) classifier [1, pp82-85], to



estimatePr (Cy;|x;) = p; in (2). As a result, we can obtain estimates of the probghiit (¢| X)
that a particular letter corresponds to the user-selected codeword. Note that fmdifeg purposes
the termsPr (X)) andPr () can be ignored as they are independerit &iurthermore, the product
[I; Pr(Ct;) depends only on the positive-class prior of the binary di@ssPr (+). In fact, it is
easy to show that during decoding this term cancels out fleetedf the binary prior, which may
therefore be set arbitrarily without affecting the deaisianade by our decoder. The simplest thing
to do is to train classifiers witRr (+) = 0.5, in which case the denominator term is constant for all
t.

2.1.1 Codebook Optimization

We used a simple model of subjects’ responses in each epamidén to estimate the probability
of making a prediction error with the above decoding metiwd.used it to compute thebdebook
loss, which is the sum of error probabilities, weighted by thelyadaility of transmission of each
letter. This loss function was then minimized in order toadtan optimized codebook.

Note that this approach is not a direct attempt to tackle ¢imeléncy for the performance of the
binary target-vs-nontarget classifier to deteriorate whehis short (although this would surely be

a promising alternative strategy). Instead, we take a “rdiriglassifier, as susceptible to short-TTI

effects as classifiers in any other study, but try to estirttedenegative impact of such effects, and
then find the best trade-off between avoiding short TTIs erotie hand, and having large Hamming
distances on the other hand.

Since our optimization did not result in a decisive gain infpenance, we do not wish to emphasize
the details of the optimization methods here. However, @othier details see the supplementary
material, or our tech report [7]. For the purposes of theenirpaper it is the properties of the
resulting codebooks that are important, rather than theiggeriterion according to which they are
considered theoretically optimal. The codebooks thenesedve described in section 3.1 and given
in full in the supplementary material.

3 EEG Experiments

We implemented a Farwell/Donchin-style speller, using :a 6 grid of alphanumeric characters,

presented via an LCD monitor on a desk in a quiet office. Stbjemch performed a single 3-hour
session during which their EEG signals were measured us@@giekAmp system (BrainProducts

GmbH) in combination with an Electro-Cap. The equipment sgtsup to measure 58 channels of
EEG, one horizontal EOG at the left eye, one bipolar verttt@lG signal, and a synchronization
signal from a light sensor attached to the display, all sashpt 250 Hz. We present results from 6
healthy subjects in their 20s and 30s (5 male, 1 female).

Two factors were compared in a fully within-subject desigwdebook and stimulus. These are
described in the next two subsections.

3.1 Codebook Comparison
In total, we explored 5 different stimulus codes:

1. RC,x: the 12-bit row-column code, with the 12 bits randomly pet@alin time (row events
mixed up randomly between column events) as in the competitata [2].

2. RCg; the 12-bit row-column code, where the 6 rows are intensifiséindom order, and
then the 6 columns in random order.

3. RC,.: this code was generated by taking cd®i€., and randomizing the assignment be-
tween codewords and letters. Thus, the TTI and Hamminguutist content of the code-
book remained identical t&C,, but the spatial contiguity of the stimulus events was
broken: that is to say, it was no longer a coherent row or caltimat flashed during any
one epoch, but rather a collection of 6 apparently randocaytered letters. However, if a
subject were to have “tunnel vision” and be unable to see etitgrk other than the target,
this would be exactly equivalent ®C.., As we shall see, for the purposes of the speller,
our subjects do not have tunnel vision.



code C [ dw | E@ |ECTH [E@D) [Pr(1) | L

RCox x2 | 24| 4 | 69| 54 04 | 0.17 | 0.60
RCepx2 | 24| 4 | 69 | 6.0 01 | 0.17 | 0.56
RC,x2 | 24| 4 | 69| 6.0 01 | 0.17 | 0.56
D10 24| 10 | 11.5| 2.5 3.1 | 0.38 | 0.54
D8, 24| 8 |107| 3.1 00 | 0.32 | 0.44

Table 1: Summary statistics for the 24-bit versions of theo8ebooks used. E{#) means the
average number of consecutive target letters per codewar®r (1) the proportion of targetsC
is our estimated probability of an error, according to theleigsee supplementary material or [7]).

4. D10: a 24-bit code with the largest minimum Hamming distance wald achieve
(dmin = 10). To make it, our heuristic for codeword selection was t&pilee codeword
with the largest minimum distance between it and all presipselected codewords. A
large number of candidate codebooks were generated thisawdythe criteria for scoring
a completed codebook were (first),, and (second, to select among a large number of
dmin = 10 candidates) the lowest number of consecutive targets.

5. D8,y @ 24-bit code optimized according to our model. The hearist greedy codeword
selection was the mean pairwise codebook loss w.r.t. puslyiselected codebook entries,
and the final scoring criterion was our overall codebook fasstion.

3.2 Stimulus Comparison

Two stimulus conditions were compared. In both conditi@isnulus events were repeated with
a stimulus onset asynchrony (SOA) of 167 msec, which as @esaur hardware could come to
recreating the 175-msec SOA of competition Il dataset II.

Flashes grey letters presented on a black background were flasheedanventional manner, being
intensified to white for 33 msec (two video frames). An exarplillustrated in the inset of the left
panel of figure 2.

Flips: each letter was superimposed on a small grey rectangleenhit®l orientation was either
horizontal or vertical (randomly determined for each Igtténstead of the letter flashing, the rect-
angle flipped its orientation instantaneously by 9@&n example is illustrated in the inset of the
right panel of figure 2. Our previous experiments had led estwlude that many subjects perform
significantly better with this stimulus, and find it more @aat, than the flash. As we shall see, our
results from this stimulus condition support this findingdéandicate a potentially useful interaction
between stimulus type and codebook design.

3.3 Experimental Procedure

The experiment was divided into blocks, each block contajrf0 trials with short (2—4 second)
rest pauses between trials. Each trial began with a red bashwhdicated to the subject which
letter (randomly chosen on each trial) they should attendthis cue came on for a second, and was
removed 1 second before the start of the stimulus sequendgecss were instructed to count the
stimulus events at the target location, and not to blink, enmvswallow during the sequence. The
sequence consisted 6f= 72 stimulus events, their spatio-temporal arrangement bedétermined

by one of the five code conditions. The 124RIC codes were repeated six times in order to make the
length up toL. = 72 (re-randomizing the row and column order on each repejitod the 24-bit
optimized codes were repeated three times (reassignirgptievords between repetitions to ensure
maximal gap between targets at the end of one repetitiontendeginning of the next) likewise to
ensure a total code length ©f bits.

Each of the 5 code conditions occurred 4 times per block, tHermf their occurrence being ran-
domized. For a given block, the stimulus condition was heldstant, but the stimulus type was
alternated between blocks. In total, each subject perfdrieblocks. Thus, in each of the 10
stimulus x code conditions, there were a total of 32 letter presemtativ 2304 stimulus events.



3.3.1 Online Verification

Subjects did not receive feedback at the end of each trialveder, at the end of the experiment,
we gave the subject the opportunity to perform free-spgllinorder to validate the system'’s perfor-
mance: we asked each subject whether they would prefer thvsiie flips or flashes, and loaded
a classifier trained on all data from their preferred stirsuipe into the system. Using the 72-bit
codebooks, all subjects were able to spell 5-15 letters antme performance ranging from 90 to
100%. Our data analysis below is restricted to leave-otterteut offline performance, excluding
the free-spelled letters.

3.4 Data Analysis

The 60-channel data, sampled at 250 Hz, were band-passdilbmtween 0.1 and 8 Hz using a
FIR filter. The data were then cut into 600-msec (150-sangperhs time-locked to the stimulus
events, and these were downsampled to 25 Hz. The data werentitened in 60-dimensional
sensor space (by applying a symmetric spatial filtering imatjual to the matrix-square-root of the
data covariance matrix, computed across all trainingstgad time-samples). Finally a linear LR
classifier was applied [1, pp82-85]. The classifier's regeddion hyperparameter was found by
10-fold cross-validation within the training set..

Offline letter classification performance was assessed l®aweetone-letter-out procedure: for a
given code condition, each of the 32 letters was consideredrn, and a probabilistic prediction
was made of its binary epoch labels using the above procédumed only on epochs from the other
31 letters. These probabilities were combined using thediag scheme described in section 2.1
and a prediction was made of the transmitted letter. We ddhie number of consecutive epochs of
the test letter that the decoder was allowed to use, from themam (12 or 24) up to the maximum
72. For each epoch of the left-out letter, we also recordeeltindr the binary classifier correctly
classified the epoch as a target or non-target.

4 Results and Discussion

Estimates of 36-class letter prediction performance ase/shn figures 2 (averaged across subjects,
as a function of codeword length) and 3 (for each individuddjsct, presenting only the results
for 24-bit codewords). The performance of the binary cfaason individual epochs is shown in
figure 4.
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Figure 2: Offline (leave-one-letter-out) 36-class preditiperformance as a function of codeword
length (i.e. the number of consecutive epochs of the lefiaiter that were used to make a predic-
tion). Performance values (and standard-error bar hgighgsaveraged across the 6 subjects.

Our results indicated the following effects:

1. Using the Donchin flash stimulus, the deleterious effe€hort TTIs were clear to see:
D10 performed far worse than the other codes despite its largenrhing distances. In
both stimulus conditions, the averaged plots of figure 2daidi thatRC,,, may also be
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Figure 3: Offline (leave-one-letter-out) 36-class praditperformance when decoding codewords
of length 24, for each of the subjects in each of the code tiondi
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Figure 4. lllustration of effect of TPT on epoch classificatiperformance, (left) in the data from
competition Il dataset II; (middle) in our experimentseeaged across all subjects and code condi-
tions for blocks in which the flash stimulus was used; (righfur experiments, averaged across the
same subjects and code conditions, but for blocks in whielflighstimulus was used. The rightmost
column of each plot shows average classification accuramsa@ll epochs (remember that short
TTls are relatively uncommon overall, and therefore dowigived in the average).

performing slightly less well thaRC,, which has longer TTIs. However, the latter effect
is not as large or as consistent across subjects as it was praiminary study [7].

2. Using the Donchin flash stimulus, our optimized cd,,, performs about as well as
traditionalRC codes, but does not outperform them.

3. Generally, performance using the flip stimulus is bettantwith the flash stimulus.

4. Using the flip stimulus, botB®8,,, and D10 perform better than thRC codes, and they
perform roughly equally as well as each other. We intergistihteraction between stim-
ulus type and code type as an indication that the flip stimolag generate rather different
psychophysiological responses from the flash (perhapsggroprimary visual evoked-
potentials, in addition to the P300) of a kind which is lesscaptible to short TTI (the



curves in the right panel of figure 4 being flatter than thostaémiddle panel). A com-
parative analysis of the spatial locations of discrimwegources in the two stimulus con-
ditions is beyond the scope of the current short report.

5. Despite having identical TTIs and Hamming distané&s,. performs consistently worse
thanRCs, in both stimulus conditions.

In summary, we have obtained empirical support for the idl@aTTI (finding #1), Hamming dis-
tance (finding #4) and stimulus type (finding #3) can all be imalated to improve performance.
However, our initial attempt to find an optimal solution bydicing these effects was not successful
(finding #2). In the flash stimulus condition, the row-coluoades performed better than expected,
matching the performance of our optimized code. In the fiimsius condition, TTI effects were
greatly reduced, making eithBx8,, or D10 suitable despite the short TTls of the latter.

It seems very likely that the unexpectedly high performasfd@C,.,andRC,, can be at least partly
explained by the idea that they have particidgatial properties that enhance their performance
beyond what Hamming distances and TTIs alone would pre@is hypothesis is corroborated by
finding #5. Models of such spatial effects should clearlydbeh into account in future optimization
approaches.

Overall, best performance was obtained with the flip stimulusing either of the two error-
correcting coded)8,,; or D10: this consistently outperforms the traditional row-coluftash design
and shows that error-correcting code design has an imgadbnto play in BCI speller develop-
ment.

As a final note, one should remember that a language modelecasda to improve performance in
speller systems. In this case, the codebook optimizatiohlem becomes more complicated than
the simplified setting we examined, because the @ioft) in (2) is no longer flat. The nature of
the best codes, according to our optimization criteriorghtichange considerably: for example, a
small subset of codewords, representing the most probetided, might be chosen to be particularly
sparse and/or to have a particularly large Hamming distart@een them and between the rest of
the codebook, while within the rest of the codebook thesectiteria might be considered relatively
unimportant. ldeally, the language model would be adapfiveexample, supplying a predictive
prior for each letter based on the previous three) which tmgdan that the codewords should be
reassigned optimally after each letter. However, suchiderstions must remain beyond the scope
of our study until we can either overcome the TTl-indepengemformance differences between
codes (perhaps, as our results suggest, by careful stirdeign), or until we can model the source
of these differences well enough to account for them in otimdpation criterion.
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